苏-34 在叙利亚投放 KAB-500S-E 制导炸弹。

一架"海雕-10"无人机准备弹射发射

2016年2月, 最早生产批 次的一架苏-35S战斗机在 叙利亚赫梅米姆空军基地。 可见该机右翼翼尖挂载有 L-256M10R "希比内" M 电 子战系统吊舱、R-73 近距空 空导弹和 R-27 红外型中距 空空导弹。另外, 该图来源 视频还显示俄军为该机机腹 挂装 OFAB-500 非制导炸弹。

苏-34携带一枚 未 投 的 KAB-500S-E 制导炸弹着陆。可 见该机翼尖挂装有 L-175V"希比内"电 子战系统吊舱。

| 张慧

在俄罗斯军方参与的叙利亚作战中, 俄 空天军作为主要兵力运用,发挥了决定性作 用。该军种出动轰炸机、战斗机、攻击机、 预警机、侦察机、直升机、无人机、运输机 等机种,共20多个机型,承担对地打击、 护航、侦察监视、战略投送等任务。俄空天 军在叙利亚赫梅米姆航空基地常驻 40 ~ 80 架军机,包括苏-35S、苏-34、苏-30SM、 苏 -24M、苏 -25SM、米格 -29SMT 等作 战飞机,卡-52、米-28N、米-24、米-8 等直升机, "海雕 -10"、"副翼 -3" 等无人 机,视情部署 A-50U 预警机、图 -214R 侦察机等;从本土或伊朗基地出动图 -160、 图 -95MS 和 图 -22M3 轰炸机。其中, 苏-35S、苏-34、苏-30SM、图-214R、 卡 -52 和米 -28N 等为新型装备。

截至2017年9月,俄空天军86%的飞 行员在叙利亚获得了战斗经验, 共执行战斗 飞行3万架次左右,完成9.2万次空中打击, 成功协助叙政府由战略防御转入战略进攻, 使其控制区从最危急时的 1.9 万平方千米扩 大到 7.8 万平方千米, 收复了叙 87.6% 的国 土面积,基本达成了原定的战略、战役目标。

俄空天军在叙利亚的作战充分反映出自 2008年俄格战争以来武器装备和作战能力 发展的成就。整体而言, 俄空天军航空装备 作战运用呈现如下特点:

三型现役轰炸机首次同时参战

在叙利亚作战中, 俄空天军同时使用了 图 -160、图 -95MS 远程轰炸机和图 -22M3 中程轰炸机。图 -160 和图 -95MS 执行远 程精确打击任务,最长飞行时间8小时20 分,首次实战使用了 Kh-555 和 Kh-101 远 程巡航导弹, 使俄成为世界第二个实战使 用空射巡航导弹的国家。例如,2015年11 月17日至20日, 共出动5架图-160和6 架图 -95MS 远程轰炸机, 分别发射 35 枚 Kh-555 和 48 枚 Kh-101 导弹, 实施了高 强度的远程精确打击。在执行远程精确打击 任务时,两型机还多次采用了绕飞西欧入地 中海、发射导弹后再从叙利亚上空返航路线。 图 -22M3 平均飞行时间 5 小时 20 分, 最 远飞行距离 4510 千米, 利用 SVP-24-22 机载瞄准系统实施临空水平轰炸, 在攻打代 尔祖尔等作战行动中成吨投放非制导弹药。 三型轰炸机的运用,兼顾了威慑他国、精打 要害、高效费比打击等作战目标。

先进空战装备提供护航

在叙利亚作战中, 俄空天军首次成体系 部署 A-50U 预警机、苏-35S 和苏-30SM 战斗机等先进空战装备。A-50U 对战斗机 的探测距离 450 千米, 能同时跟踪 300 个 空中、地面和海上目标, 可与俄军各种指挥 自动化系统互联互通。苏 -35S 和苏 -30SM 主要为轰炸机和战术打击飞机护航,均配装 无源相控阵雷达、红外搜索与跟踪系统、先 进电子战系统、推力矢量发动机。苏-35S 还具备机群协同作战能力, 其"决斗"系统 可协助飞行员高效、精准完成任务。俄空天 军正根据叙利亚作战经验,为苏-35S进气 道加装防异物隔板,并升级苏-30SM的航 电和武器系统。

天军远程航空兵图 -160 轰

炸机飞抵地中海东部,由

多型装备分工实施战术打击

在叙利亚作战中, 俄空天军运用多型 战斗轰炸机、攻击机、攻击直升机、多功能 战斗机实施战术打击。苏-34战斗轰炸机 首次实战使用。为达成突然性, 俄空天军在 2015年10月利用大型民航客机掩护该机进 驻。该机配装先进飞控系统,能长时间低空 稳定飞行并精确瞄准, 承担了多数重点目标 的战术精确打击任务。苏 -24M 战斗轰炸 机和苏 -25SM 攻击机主要执行常规打击任 务。米 -28N 和卡 -52 攻击直升机配装热像 仪,可在夜间发现5千米内的人员和车辆, 多次用于支援叙政府军地面部队进攻。米 格 -29SMT 多功能战斗机主要承担对地打 击任务,也为图 -22M3 轰炸机护航。

有人和无人侦察装备共同使用

在叙利亚作战中, 俄空天军运用了 图 -214R 和伊尔 -20M1 大型侦察机,"海 雕-10"、"副翼-3"等小型无人侦察机。 图 -214R 是俄现役最先进的侦察机,主要 用于监视土耳其的兵力调动和部署, 配装侧 视雷达、电子情报、光电等侦察系统, 雷 达侦察距离 200 千米、分辨力 1米,可穿 透植被和积雪,光电系统分辨力0.5米。伊 尔-20M1主要用于无线电信号的侦察和 定位,为打击提供目标指示。在无人机 1.4 万多架次飞行中,"海雕-10"战术无人 机占三分之一,执行了目标侦察、炮兵校 射、战场评估等任务,成功发现了被击落的 苏 -24M 残骸和幸存的机组人员。

制导和非制导弹药相互搭配

俄空天军使用了 Kh-29L 和 Kh-25 空地导弹、AT-9和AT-16反坦克导弹、 KAB-250/-500/-1500系列制导炸弹,对 重要目标实施了精确打击。同时还使用了"炸 弹之父"巨型炸弹、OFAB-250/-500和 FAB-250/-500 系列炸弹、RBK-500子 母炸弹、BetAB-500 侵彻炸弹等非制导弹 药, 其中"炸弹之父"装药7.1吨, 爆炸威

力达 44 吨 TNT 当量。KAB-250/-500 和 BetAB-500为首次使用。非制导弹药主要 依靠机载瞄准系统保证打击精度。

在加油支援、无人机运用等方面 暴露出一些弱点

在叙利亚作战中, 俄空天军也暴露出一 些能力弱点。一是空中加油支援能力极为薄 弱。大型加油机数量很少,又全部配属远程 航空兵以支持轰炸机运用,按照余量原则支 持战术飞机, 使许多战术飞机只能靠挂载副 油箱或多带燃油完成转场和出击,影响了航 空装备的灵活运用和效能发挥。二是无人机 发挥作用有限。俄军在叙利亚作战中使用的 无人机包括"海雕-10"、"副翼 3"、"前哨" 等, 其中"海雕-10"是此战中运用的主力 无人机,执行了目标侦察、炮兵校射、战场 评估等任务,并在苏-24M被击落后在土耳 其边境实施侦察, 发现了被击落飞机残骸和 幸存的机组人员。但是, 俄军未列装长航时 侦察无人机和察打一体无人机, 上述中小型 无人机仅用于情报信息支援,任务飞行高度 低、传感器覆盖范围小、续航时间短,效能 较低。三是精确制导武器储备仍较少、使用 比重较低。虽然改进型机载瞄准系统提高了 非制导弹药精度,但其误差仍较大,迫使俄 限制其在城区争夺战等环境下的使用。

"机动能力与需求研究" 将确定美军未来运输需求

美国国防部启动新的机动能力研究, 旨在评估美军所需空中加油机、货运飞机 和补给船的准确数量,以支持特朗普政府 的《国防战略》,并推动美军 2020 财年支 出计划的新投资决策。

应《2018 财年国防授权法》的要求, 美国防部启动这项"机动能力与需求研究" (MCRS-18),由国防部长办公厅的成本评 估和项目评估办公室和美国运输司令部联 合牵头。除了估算满足作战指挥官需求的 空运飞机、加油机和海上运输船数量,新 研究还将评估在民用后备空运力量在竞争 环境下运行的影响, 最后在美军参谋长联 席会议主席制定的风险管理分类基础上对 风险进行评估。这项研究预计将在今年9 月底完成,将直接影响五角大楼今年晚些 时候制定的 2020 ~ 2024 财年五年投资计

国防部之前开展的机动能力研究曾影 响到数十亿美元的预算分配。最引人注目 的研究成果出自1992年,该研究催生了美 军对空军价值 690 亿美元的 C-17 项目和 海军近70亿美元的高速货船船队的需求。

2016年,国防部向国会提交了一项 远程航空计划,设想在2019财年将空军 C-130 战术运输机的库存增加到 300 架, 执行战区内运输任务,同时组建 275 架的 C-17 和 C-5 运输机机队来提供战略运输。 这份报告将加油机数量定为 457 架,并计 划增至479架。美空军计划采购179架新 的 KC-46A 加油机,作为 KC-46A 项目采 办的一部分。

研究内容主要包括:

(1)增加加油机数量。美国防部表示, 新的机动能力研究将增加对加油机的整体

需求。美空军空中机动司令部负责人卡尔 顿・埃弗哈特表示,479架加油机是最基础 的,新研究将对国防部增加加油机数量这 一需求加以验证。

美国运输司令部司令3月8日向众议 院武装力量委员会海上力量与兵力投送小 组委员会发表证词称,有强烈迹象表明必 须调整空军加油机需求。持续老化的空中 加油机队与 KC-46 生产计划延后已经威胁 到联合部队有效执行作战计划的能力。加 油机队平日的高利用率已经快要接近威胁 整个部队维持当前支援水平的程度, 因此, 在确定加油机的数量时应仔细协调 KC-10 和 KC-135 加油机退役与 KC-46 加油机生 产与交付之间的节奏,以维持目前的兵力 投送能力。

(2)增加运输船数量。新机动能力研 究还将考虑美军的海上补给需求。自上世 纪90年代以来, 五角大楼的历次机动能 力研究一直认为美军需要大约 186 万平方 米的滚装船来快速运送物资支持应急行动。 国防部后勤人士预测, 占运输能力四分之 一的货船正在老化, 其服役寿命或将在 2026 ~ 2033 年之间结束。

美海军 2019 ~ 2023 财年的预算计划 增加了22艘运输船的延寿经费,但仍有30 艘滚动船(共65艘)和全部11艘特种船 会在未来 15 年内老化退役。

国防部上一次的研究是由参谋长联 席会议副主席在2012年5月委托启动的 "2018年机动能力评估"。该研究旨在支 持2012年1月奥巴马政府的《国防战略》 和2012年的《四年一度防务评审》,研究 2018年所需的机动能力。 (袁政英)

美国国防部主要武器系统价格上涨10%

2017年,美国国防部主要武 器采办价格预计上涨 10%, 计划成 本从 1.74 万亿美元上涨到 1.92 万 亿美元。这些数据是日前发布的美 国防部年度《选择性采办报告》的 一部分。该报告涵盖了83个重大 武器采办项目,这些项目组成了由 前任负责采办、技术与后勤的国防 部副部长所管理的项目的大部分。

然而,这些增长是采办项目中 的问题的必然结果,虽然报告一开 始指出成本增长部分是由于选择性 采办清单中新增了一个重大项目, 即 CH-47F 运输直升机现代化项 目,同时若干项目的采办数量有所 增加。只有两个项目违反了纳恩 – 迈科迪法案, 即政府的单价增长标 准,这两个项目都来自美国海军。

综合防御电子对抗(IDECM) Blocks 2/3 项目严重违反了纳恩 -迈科迪法案,该项目单价增幅几乎 达到 132.5%。这主要是由于 Block 3项目的采办数量削减,而采办量 削减是国防部由于世界性"挑战转 变"而采取其他解决方案的结果。

同时, 近海战斗舰任务模块显 然也违反了纳恩 – 迈科迪法案, 这 依然是由于采办数量削减导致的。 海军决定将任务模块的采办数量由 64 套减少到 48 套,这自然会导致 单价的上涨。

国防部最大的采办项目,即 F-35 战斗机项目的成本基本保持 不变,仅减少了3.5亿美元。国防 部估算 F-35 机身及其配置的 F135 发动机的总采办成本将达到 4061 亿美元。 报告指出,"总体而言,

由于 Block 3F 能力的全面交付, (F-35的)开发工作维持稳定。运 行与维护成本预计将在'里程碑 C' (即全面投产)阶段更新,这一阶 段目前的计划时间为2019年4月。

美国陆军方面大部分项目的成 本增加是由于计划量增加及采办时 间线延长。例如,"制导多管火箭 发射系统"(GMLRS)及其替换弹 头项目成本的增加是由于陆军计划 追加购买 52760 枚火箭, 并将采办 时间从2024财年延长到2033财年。

美国海军陆战队同样计划购买 更多的联合轻型战术车, 而陆军计 划追加购买538套"爱国者 – 先进 能力"-3导弹分段增强型导弹(即 PAC-3 SME).

导弹防御局的弹道导弹防御系 统项目成本同样增加了72亿美元, 原因是项目主要性能的增强,包括 针对太平洋地区威胁的敌我识别雷 达、部署在夏威夷的另一套雷达以 及在位于阿拉斯加格里利堡的发射 井增加20枚陆基中段防御系统拦 截弹 (GBI)。

这些资金同时用于在格里利堡 一号导弹发射场建造两座发射井, 以安置新的 GBI, 建造 6 座辅助设 施以为 64 枚部署状态下的 GBI 中 的44枚提供维护保障,并延长海 基X波段雷达的海上部署时间。追 加采办 100 枚"萨德"系统拦截弹、 16 枚"标准"-3 Block IIA 导弹 以及 62 枚 "标准" -3 Block IB 导 弹的同样导致了弹道导弹防御系统 项目总成本的上涨。

空军方面,"联合直接打击弹

笔上涨是由军方计划购买数量的增 加导致的, 而不是由任何技术问题 导致的。大部分成本增加(约9.113 亿美元)是由于JDAM 尾翼的采 办量增加了35000套导致的。报告 同时指出, JDAM 生产需求的增长、 空军对"武器仪表遥测工具组件" 需求的提升, 以及海军评估的改变 同样导致了采办成本的上升。

其他主要的成本增加与 GPS 系 统现代化有关。例如,"作战控制段" (或称 OCX)项目将为下一代 GPS 卫星星座建造新的地面控制站,该 项目成本增加12%, 达61亿美元。 增加的 6.653 亿美元是由新需求以 及未来五年拨款额度的增加导致

"军用 GPS 用户设备增值 1" 项目成本增加 2.651 亿美元,增幅 23%。价值 14.3 亿美元的新计划与 新通过的"里程碑 B"成本估算以 及由国防部层面的拨款调整所导致

由于2018年的数据反映了国 防部推动的将重大采办项目管理工 作由负责采办、技术与后勤的国 防部副部长转移到各军种的初步成 果,未来几年追踪上述项目的成本 具有重要意义。负责采办与维护的 国防部副部长(负责采办、技术与 后勤的国防部副部长职位的两个继 承者之一,于2018年2月1日设 置) 艾伦·洛尔德表示, 她将把若 干关键项目维持在自己的直接监管 之下, 然而日常项目的优先管理权 已经移交各军种层级。今年1月1 日, 空军已经接管了21个项目的 直接监管权, 陆军接管了18个, 海军则接管了34个。 (谢忱)

波音公司投资英国高超声速发动机公司

据波音公司官网4月11日消 息,波音公司"地平线X风投" (HorizonX Ventures) 团队4月 11 日宣布,将与罗罗公司、BAE 系统公司共同投资英国反作用发动 机公司(REL)3730万美元。反作 用发动机公司的技术将促进下一代 高超声速飞行和空天飞行器的发展。

反应发动机公司是一家以"协 同吸气式火箭发动机"(SABRE), 即"佩刀"而出名的英国公司。作 为"佩刀"项目的一部分, REL 开 发的轻质热交换器技术, 能够防止 发动机部件在高速条件下过热,提 升高超声速飞行能力。

"反作用发动机公司开启了将 改变未来航空和太空飞行的先进动 力技术, 我们希望能够利用它们的 颠覆性技术,以支持波音对高超声 速飞行的追求。"波音公司"地平线 X 风投"副总裁史蒂夫在新闻发布 会上表示。

"波音公司在很多领域都处于 世界领先地位,为高超声速研究和 空天系统方面带来了宝贵的专业知 识。波音选择 REL 作为其在英国的 第一笔投资, 我对此感到非常激动 和荣幸,"REL总裁马克·托马斯 表示,"这是一个非常令人兴奋的举 措,将有助于我们开发商业技术业 务,并通过 SABRE 技术加速推动 未来航空和太空旅行的发展。"

波音"地平线 X 风投"和罗

罗、BAE系统公司共同参与了这笔 3730 万美元的 B 轮融资。波音没 有透露其投资规模, 只是透露通常 在百万到千万美元之间。

波音"地平线 X 风投"于一年 前成立, 作为对外投资媒介, 投资 与波音利益相关的航空航天、制造 和通信领域技术,具体包括自主系 统、储能、先进材料、增强现实系 统和软件、机器学习、混合电动力 推进和物联网。 (张灿)